Sign InTry Free

Integrate Data with Confluent Cloud and Snowflake

Confluent is an Apache Kafka-compatible streaming data platform that provides strong data integration capabilities. On this platform, you can access, store, and manage non-stop real-time streaming data.

Starting from TiDB v6.1.0, TiCDC supports replicating incremental data to Confluent in Avro format. This document introduces how to replicate TiDB incremental data to Confluent using TiCDC, and further replicate data to Snowflake, ksqlDB, and SQL Server via Confluent Cloud. The organization of this document is as follows:

  1. Quickly deploy a TiDB cluster with TiCDC included.
  2. Create a changefeed that replicates data from TiDB to Confluent Cloud.
  3. Create Connectors that replicate data from Confluent Cloud to Snowflake, ksqlDB, and SQL Server.
  4. Write data to TiDB using go-tpc, and observe data changes in Snowflake, ksqlDB, and SQL Server.

The preceding steps are performed in a lab environment. You can also deploy a cluster in a production environment by referring to these steps.

Replicate incremental data to Confluent Cloud

Step 1. Set up the environment

  1. Deploy a TiDB cluster with TiCDC included.

    In a lab or testing environment, you can deploy a TiDB cluster with TiCDC included quickly by using TiUP Playground.

    tiup playground --host 0.0.0.0 --db 1 --pd 1 --kv 1 --tiflash 0 --ticdc 1
    # View cluster status
    tiup status
    

    If TiUP is not installed yet, refer to Install TiUP. In a production environment, you can deploy a TiCDC as instructed in Deploy TiCDC.

  2. Register Confluent Cloud and create a Confluent cluster.

    Create a Basic cluster and make it accessible via Internet. For details, see Quick Start for Confluent Cloud.

Step 2. Create an access key pair

  1. Create a cluster API key.

    Sign in to Confluent Cloud. Choose Data integration > API keys > Create key. On the Select scope for API key page that is displayed, select Global access.

    After creation, a key pair file is generated, as shown below.

    === Confluent Cloud API key: xxx-xxxxx ===
    
    API key:
    L5WWA4GK4NAT2EQV
    
    API secret:
    xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
    
    Bootstrap server:
    xxx-xxxxx.ap-east-1.aws.confluent.cloud:9092
    
  2. Record the Schema Registry Endpoints.

    In the Confluent Cloud Console, choose Schema Registry > API endpoint. Record the Schema Registry Endpoints. The following is an example:

    https://yyy-yyyyy.us-east-2.aws.confluent.cloud
    
  3. Create a Schema Registry API key.

    In the Confluent Cloud Console, choose Schema Registry > API credentials. Click Edit and then Create key.

    After creation, a key pair file is generated, as shown below:

    === Confluent Cloud API key: yyy-yyyyy ===
    API key:
    7NBH2CAFM2LMGTH7
    API secret:
    xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
    

    You can also perform this step by using Confluent CLI. For details, see Connect Confluent CLI to Confluent Cloud Cluster.

Step 3. Create a Kafka changefeed

  1. Create a changefeed configuration file.

    As required by Avro and Confluent Connector, incremental data of each table must be sent to an independent topic, and a partition must be dispatched for each event based on the primary key value. Therefore, you need to create a changefeed configuration file changefeed.conf with the following contents:

    [sink]
    dispatchers = [
    {matcher = ['*.*'], topic = "tidb_{schema}_{table}", partition="index-value"},
    ]
    

    For detailed description of dispatchers in the configuration file, see Customize the rules for Topic and Partition dispatchers of Kafka Sink.

  2. Create a changefeed to replicate incremental data to Confluent Cloud:

    tiup ctl:v6.1.1 cdc changefeed create --pd="http://127.0.0.1:2379" --sink-uri="kafka://<broker_endpoint>/ticdc-meta?protocol=avro&replication-factor=3&enable-tls=true&auto-create-topic=true&sasl-mechanism=plain&sasl-user=<broker_api_key>&sasl-password=<broker_api_secret>" --schema-registry="https://<schema_registry_api_key>:<schema_registry_api_secret>@<schema_registry_endpoint>" --changefeed-id="confluent-changefeed" --config changefeed.conf
    

    You need to replace the values of the following fields with those created or recorded in Step 2. Create an access key pair:

    • <broker_endpoint>
    • <broker_api_key>
    • <broker_api_secret>
    • <schema_registry_api_key>
    • <schema_registry_api_secret>
    • <schema_registry_endpoint>

    Note that you should encode <schema_registry_api_secret> based on HTML URL Encoding Reference before replacing its value. After you replace all the preceding fields, the configuration file is as follows:

    tiup ctl:v6.1.1 cdc changefeed create --pd="http://127.0.0.1:2379" --sink-uri="kafka://xxx-xxxxx.ap-east-1.aws.confluent.cloud:9092/ticdc-meta?protocol=avro&replication-factor=3&enable-tls=true&auto-create-topic=true&sasl-mechanism=plain&sasl-user=L5WWA4GK4NAT2EQV&sasl-password=xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx" --schema-registry="https://7NBH2CAFM2LMGTH7:xxxxxxxxxxxxxxxxxx@yyy-yyyyy.us-east-2.aws.confluent.cloud" --changefeed-id="confluent-changefeed" --config changefeed.conf
    
    • Run the command to create a changefeed.

      • If the changefeed is successfully created, changefeed information, such as changefeed ID, is displayed, as shown below:

        Create changefeed successfully!
        ID: confluent-changefeed
        Info: {... changfeed info json struct ...}
        
      • If no result is returned after you run the command, check the network connectivity between the server where you run the command and Confluent Cloud. For details, see Test connectivity to Confluent Cloud.

  3. After creating the changefeed, run the following command to check the changefeed status:

    tiup ctl:v6.1.1 cdc changefeed list --pd="http://127.0.0.1:2379"
    

    You can refer to Manage TiCDC Cluster and Replication Tasks to manage the changefeed.

Step 4. Write data to generate change logs

After the preceding steps are done, TiCDC sends change logs of incremental data in the TiDB cluster to Confluent Cloud. This section describes how to write data into TiDB to generate change logs.

  1. Simulate service workload.

    To generate change logs in a lab environment, you can use go-tpc to write data to the TiDB cluster. Specifically, run the following command to create a database tpcc in the TiDB cluster. Then, use TiUP bench to write data to this new database.

    tiup bench tpcc -H 127.0.0.1 -P 4000 -D tpcc --warehouses 4 prepare
    tiup bench tpcc -H 127.0.0.1 -P 4000 -D tpcc --warehouses 4 run --time 300s
    

    For more details about go-tpc, refer to How to Run TPC-C Test on TiDB.

  2. Observe data in Confluent Cloud.

    Confluent topics

    In the Confluent Cloud Console, click Topics. You can see that the target topics have been created and are receiving data. At this time, incremental data of the TiDB database is successfully replicated to Confluent Cloud.

Integrate data with Snowflake

Snowflake is a cloud native data warehouse. With Confluent, you can replicate TiDB incremental data to Snowflake by creating Snowflake Sink Connectors.

Prerequisites

Integration procedure

  1. Create a database and a schema in Snowflake.

    In the Snowflake control console, choose Data > Database. Create a database named TPCC and a schema named TiCDC.

  2. In the Confluent Cloud Console, choose Data integration > Connectors > Snowflake Sink. The page shown below is displayed.

    Add snowflake sink connector

  3. Select the topic you want to replicate to Snowflake. Then go to the next page.

    Configuration

  4. Specify the authentication information for connecting Snowflake. Fill in Database name and Schema name with the values you created in the previous step. Then go to the next page.

    Configuration

  5. On the Configuration page, select AVRO for both Input Kafka record value format and Input Kafka record key format. Then click Continue. Wait until the connector is created and the status becomes Running, which might take several minutes.

    Data preview

  6. In the Snowflake console, choose Data > Database > TPCC > TiCDC. You can see that TiDB incremental data has been replicated to Snowflake. Data integration with Snowflake is done.

Integrate data with ksqlDB

ksqlDB is a database purpose-built for stream processing applications. You can create ksqlDB clusters on Confluent Cloud and access incremental data replicated by TiCDC.

  1. Select ksqlDB in the Confluent Cloud Console and create a ksqlDB cluster as instructed.

    Wait until the ksqlDB cluster status is Running. This process takes several minutes.

  2. In the ksqlDB Editor, run the following command to create a stream to access the tidb_tpcc_orders topic:

    CREATE STREAM orders (o_id INTEGER, o_d_id INTEGER, o_w_id INTEGER, o_c_id INTEGER, o_entry_d STRING, o_carrier_id INTEGER, o_ol_cnt INTEGER, o_all_local INTEGER) WITH (kafka_topic='tidb_tpcc_orders', partitions=3, value_format='AVRO');
    
  3. Run the following command to check the orders STREAM data:

    SELECT * FROM ORDERS EMIT CHANGES;
    

    Select from orders

    You can see that the incremental data has been replicated to ksqlDB, as shown in the preceding figure. Data integration with ksqlDB is done.

Integrate data with SQL Server

Microsoft SQL Server is a relational database management system (RDBMS) developed by Microsoft. With Confluent, you can replicate TiDB incremental data to SQL Server by creating SQL Server Sink Connectors.

  1. Connect to SQL Server and create a database named tpcc.

    [ec2-user@ip-172-1-1-1 bin]$ sqlcmd -S 10.61.43.14,1433 -U admin
    Password:
    1> create database tpcc
    2> go
    1> select name from master.dbo.sysdatabases
    2> go
    name
    ----------------------------------------------------------------------
    master
    tempdb
    model
    msdb
    rdsadmin
    tpcc
    (6 rows affected)
    
  2. In the Confluent Cloud Console, choose Data integration > Connectors > Microsoft SQL Server Sink. The page shown below is displayed.

    Topic selection

  3. Select the topic you want to replicate to SQL Server. Then go to the next page.

    Authentication

  4. Fill in the connection and authentication information. Then go to the next page.

  5. On the Configuration page, configure the following fields and click Continue.

    FieldValue
    Input Kafka record value formatAVRO
    Insert modeUPSERT
    Auto create tabletrue
    Auto add columnstrue
    PK moderecord_key
    Input Kafka record key formatAVRO
    Delete on nulltrue
  6. After configuration, click Continue. Wait until the connector status becomes Running, which might take several minutes.

    Results

  7. Connect SQL Server and observe the data. You can see that the incremental data has been replicated to SQL Server, as shown in the preceding figure. Data integration with SQL Server is done.

Download PDFRequest docs changes
Was this page helpful?
Open Source Ecosystem
TiDB
TiKV
TiSpark
Chaos Mesh
© 2022 PingCAP. All Rights Reserved.